
Allen, John, Lulu

Due: October 28th, 2024

PID Ball Balance

Introduction:

This project uses an Infrared Proximity Distance Sensor and a servo motor to

implement a PID control system to balance a ping pong ball on a beam. The goal is to

maintain the ball's position at the center of the beam by adjusting the servo angle based on

real-time distance measurements from the sensor.

Parts List:

● Infrared Proximity Distance Sensor (Model GP2Y0A21YK0F)

● Servo motor

● 1 Arduino board

● Wires

● Ping pong ball

● M3 screws (for assembling parts)

● screws of various lengths and nuts

● 3D-printed construction parts

● External Power

● Wood glue

● Super glue

Photos of robot:

Design Procedures & Decisions:

1. Construction: we started by assembling the structure according to the handout

image, but encountered two unexpected obstacles. First, we accidentally reversed

the assembly of the wooden base, which prevented the edge blocks from effectively

stabilizing the base by offsetting screw penetration. To avoid reprinting the entire

base, we opted to glue discarded wood blocks underneath to even out the screw

height. Second, the 3D-printed servo-beam joint could not move freely. We quickly

identified the hardware issue, sought assistance from Professor Halstead, and

promptly reprinted the part to resolve the problem. In the process of trying to tune our

PID feedback, we encountered connection and power issues with our sensor and

Arduino. We were able to solve this by replacing both the connecting wires to our

IPDS sensor and our Arduino.

2. Calibration: to calibrate the infrared proximity distance sensor (Model

GP2Y0A21YK0F), we began by writing an Arduino sketch to output raw sensor

readings (also, this step tested the functionality of the sensor). Starting with the ball

at the bracket's position (which is 3 inches from the sensor as we measured), we

used a ruler alongside the beam to measure the distance and gradually move the ball

in approximately 1 inch increments away from the sensor. At each point, we recorded

the sensor's output, creating a detailed dataset to map voltage readings to

distances(see Table 1). Next, using Desmos, we plotted the sensor output and fit the

data to a power law function , where a = 1934.09 and b = −1.01896. This 𝑦 = 𝑎𝑥𝑏

function provided an excellent fit, with a value of 0.9994, indicating high accuracy. 𝑅2

Finally, we rearranged the formula and simplified our values to express distance as a

function of voltage: , allowing us to accurately calculate the distance from 𝑥 = 19340.98

𝑦0.98

any voltage reading (see Figure 1). We found our balance point to be roughly 8.54

inches from the sensor.

 14.3

cm

13

cm

12

cm

11

cm

10

cm

9cm 8cm 7cm 6cm 5cm 4cm 3cm

V(analog) 125 141 152 168 183 203 234 265 315 378 479 625

Table 1: Calibration Data: Distance vs. Voltage Output of the Sensor

Figure 1: Calibration Curve: Voltage to Distance Mapping with Power Law Fit

3. Servo Control: to control the servo motor, we used the Servo.h library as suggested

in the handout. We started by including the library and creating a servo object using

Servo myservo;. In the setup() function, we attached the servo to pin 9 on the

Arduino using myservo.attach(servoPin); and set it to the initial position of 90

degrees with myservo.write(90);. This allowed us to place the beam in a neutral

position at the beginning. In our adjustHeight() function, we used

myservo.write(angle); to dynamically adjust the servo angle based on the PID

control calculations, which was important for precise control over the angle to

balance the ping pong ball effectively on the beam. We utilized the constrain()

function to ensure the angle stayed within the 0 to 180-degree range, which

prevented the servo from attempting to move beyond its physical limitations.

We used the exponential filter with a weight of 0.2 to filter out the noise from our

IPDS readings, which helped reduce jitters and improve our adjustment process. We

also normalized our error between -1 and 1 in our adjustHeight() function to

make it easier to work with.

4. PID Control: aiming to maintain the ball's position at the center of the beam, we

implemented a PID feedback loop to control the servo angle based on the sensor’s

distance readings.

● Proportional Control (P): the proportional adjustment, up, was calculated

using the difference between the target set point and the sensor reading,

scaled by a gain factor K. It provided immediate correction based on the

error.

● Integral Control (I): we accumulated past errors over time into cumError,

which was scaled by K/Ti to yield ui, in order to address steady-state error.

We reset cumError if the error direction changed to prevent excessive

buildup.

● Derivative Control (D): the derivative adjustment, ud, calculated the rate of

change of error to dampen oscillations. It is done by finding the difference

between the current and previous errors, divided by the elapsed time dt.

The total control signal, u, combined up, ui, and ud, centered around 90 degrees to

set the servo angle. Using constrain(), we limited u to 0-180 degrees to match

the servo’s range, which allows the beam to move stably.

Code:

#include <Servo.h> //Include the servo library

const int IPDS_Sensor = A0; //Infrared sensor attached to analog pin A0

const int servoPin = 9; // Servo attached to digital pin 9

const int setPoint = 8.54; // Approximately the distance measurement that should be

read when the ball is in the center of the beam

Servo myservo; // Initialize the servo.

float prevMeasure; //Initialize previous measurement value used in exponential

filter.

//Initialize time values used in adjustHeight function

long previousTime;

long currentTime;

long previousError; // Initialize previousError value used for adjustment function

float error; // Initialize error. Used in adjustment function.

float angle; // Initialize the angle. This is what is used by the adjustment

function to set the servo angle.

float dt; //The time elapsed between loops

float u; // Total adjustment

float up; //Proportional adjustment

float ui; //Integral adjustment

float ud; //Derivative adjustment

float cumError = 0; //Initialize cumulative error to 0.

void setup() {

 Serial.begin(9600); // Set baud rate

 myservo.attach(servoPin); //Initialize servo for function calls

 myservo.write(90); //Test the servo and give it an initial value.

 previousTime = millis(); //Initialize the previousTime value for the first call.

 delay(500); //Wait before initiating balancing loop.

}

void loop() {

 float raw_measure = (pow(1934.09, 0.98))/(pow(analogRead(IPDS_Sensor),0.98));

//Get the distance measurement from the proximity distance sensor. The constant

values were found from the calibration process for our sensor.

 delay(5); //Wait a small amount of time between measurements.

 float weight = 0.2; // The weighting value used for the exponential filter

 float sensorDistance = (weight * raw_measure) + (1 - weight) * prevMeasure; //

Filter out noise from the measurements using exponential filter.

 prevMeasure = sensorDistance; // Set the previous measurement to the current one

for use in the exponential filter the next time around

 adjustHeight(sensorDistance, setPoint, 10.7, 4.8, 0.01); // Call the adjustment

function, passing in the constants found in the process of tuning

}

/* Function used for adjusting the servo output. Takes 5 parameters:

 sensorValue: The current measurement from the proximity sensor.

 set_point: The objective distance for the ball

 K: Constant value used in adjustment.

 Ti: Integral constant value.

 Td: Derivative constant value.

 Sets the servo to the appropriate value for balancing the ball.*/

float adjustHeight(float sensorValue, float set_point, float K, float Ti, float

Td){

 error = set_point - sensorValue; // Get the error as the difference between the

goal distance and the actual distance measured

 error = error / 5.0; //(roughly) Normalize error between -1 and 1

 cumError += error; //Add error to the running cumulative error.

 if((cumError > 0 && error < 0) || cumError < 0 && error > 0){

 cumError = 0; //If the ball overshoots the midpoint, reset the cumulative error

in order to limit integral buildup

 }

 currentTime = millis(); //Get the current time

 dt = (currentTime - previousTime)/1000.0; //Calculate how much time has elapsed

and convert to seconds

 previousTime = currentTime; // Set the previous time to the current time for the

next loop

 up = K * error; //Set the proportional adjustment

 ui = (K/Ti) * cumError * dt; //Set the integral adjustment

 ud = K * Td * (error-previousError)/dt; //Set the derivative adjustment

 previousError = error; //Set the previous error to the current error for the next

adjustment step

 u = up + ui + ud + 90; //Set the total adjustment to the proportional adjustment +

the integral adjustment + the derivative adjustment + 90. The 90 is so that when

the ball is stationary in the middle of the beam, the servo value is set to 90

which keeps the beam perfectly flat

 angle = constrain(u, 0, 180); //Constrain the angle adjustment between 0 and 180,

the range of values accepted by the servo

 myservo.write(angle); //Write the angle for balancing to the servo

}

In conclusion, our balance-bot works pretty well. It is a bit slow to adjust as the ball

gets closer to being perfectly in the center, but this tradeoff allows the robot to consistently

get the ball fairly close to the center point quickly. Our range of motion limitations also mean

that though the integral adjustment will continue to adjust the ball, there is not enough spare

angle for it to roll over obstacles. With more time we might continue tuning our adjustment

constants and trying different combinations of influence. Overall we are happy with how the

robot turned out.

References

Robotics_Assignments_PIDBalance.pdf (n.d.)

https://thespring.skidmore.edu/d2l/common/viewFile.d2lfile/Database/MTc1ODM2OA/Roboti

cs_Assignments_PIDBalance.pdf?ou=55798

https://thespring.skidmore.edu/d2l/common/viewFile.d2lfile/Database/MTc1ODM2OA/Robotics_Assignments_PIDBalance.pdf?ou=55798
https://thespring.skidmore.edu/d2l/common/viewFile.d2lfile/Database/MTc1ODM2OA/Robotics_Assignments_PIDBalance.pdf?ou=55798

